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Motivated by many recent experimental studies of nonclassical rotational inertia �NCRI� in superfluid and
supersolid samples, we present a study of the hydrodynamics of a superfluid confined in the two-dimensional
region �equivalent to a long cylinder� between two concentric arcs of radii b and a �b�a� subtending an angle
�, with 0���2�. The case �=2� corresponds to a blocked ring. We discuss the methodology to compute the
NCRI effects and calculate these effects both for small angular velocities, when no vortices are present, and in
the presence of a vortex. We find that, for a blocked ring, the NCRI effect is small and that therefore there will
be a large discontinuity in the moment of inertia associated with blocking or unblocking circular paths. For
blocked wedges �b=0� with ���, we find an unexpected divergence of the velocity at the origin, which
implies the presence of either a region of normal fluid or a vortex for any nonzero value of the angular velocity.
Implications of our results for experiments on “supersolid” behavior in solid 4He are discussed. A number of
mathematical issues are pointed out and resolved.
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I. INTRODUCTION

Flow without dissipation is the defining feature of super-
fluidity. Because of this property, the moment of inertia of a
vessel containing a superfluid is different from �smaller than�
that when the liquid is in the normal state. This effect is
largest in the absence of vortices, when superfluid flow is
irrotational. The difference between the moments of inertia
when the liquid, confined by boundary conditions, is in the
normal and superfluid states is known as the “nonclassical
rotational inertia” �NCRI�. The occurrence of NCRI is often
used as an experimental signature of superfluidity. Superfluid
hydrodynamics and the resulting NCRI have been studied
extensively �1� in the past for simple geometries, such as
spherical, cylindrical, or rectangular containers rotating
about a symmetry axis. Because of several recent develop-
ments, some of which are briefly discussed below, it has
become necessary to understand the properties of flow of
superfluids in enclosures of more complicated geometry.
These provide the motivation for our present study.

Recent observations �2–8� of NCRI in torsional oscilla-
tion experiments on solid 4He have been interpreted as the
occurrence of a “supersolid” phase. This interpretation of the
experimental results is controversial. There is experimental
�5,9� and theoretical �10,11� evidence suggesting that the ob-
served NCRI is due to superfluidity along crystalline defects
such as grain boundaries in a polycrystalline sample and net-
works of dislocation lines. Since these extended defects form
complex disordered structures, calculations of the flow prop-

erties and the rotational inertia of a superfluid confined in
irregular-shaped channels are necessary for a quantitative as-
sessment of whether this mechanism is the correct explana-
tion of the observed results. In this context, it is important to
examine whether the superfluid component can flow along
continuous closed paths in the sample. Since the geometry of
the network of defects would depend on thermodynamic
variables such as temperature and pressure, and on the cell
geometry, the availability of such paths would also depend
on these parameters and conditions. Thus, an understanding
of the dependence of the NCRI on such variables requires,
for example, a calculation of how the NCRI arising from a
blocked ring of superfluid changes as the blockage is re-
moved. To check whether the observed NCRI is due to the
occurrence of extended superfluidity, the NCRI of samples in
which the solid 4He is confined in the annular region be-
tween two concentric cylinders has been measured �2,7� in
the presence of a barrier in the annulus that prevents possible
flow of the superfluid along a closed path surrounding the
rotation axis �the common axis of the cylinders�. The NCRI
observed under these conditions is found to be much smaller
than that for samples in which the artificial block is not
present. The calculation just mentioned is obviously relevant
for a quantitative understanding of the results of such experi-
ments. Finally, an understanding of experimental results
�6–8� on the dependence of the NCRI on the frequency of
torsional oscillations requires a theoretical analysis of vortex
formation and critical velocity in superfluids confined in
irregular-shaped channels.

Our study is also partly motivated by the recent explosion
of activity in experimental and theoretical studies of super-
fluidity and other quantum phenomena in trapped, ultracold
atomic systems �12,13�. Also, there have been many experi-
mental studies of the flow properties and NCRI of superflu-
ids confined in porous media such as Vycor glass and con-
tainers packed with fine powder �14–17�. The first
experimental observation �18� of “supersolid” behavior was
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in a torsional oscillator experiment on solid 4He confined in
Vycor glass. Since the pores in these systems have complex
geometry, it is necessary to work out the hydrodynamics of
superfluids in irregular-shaped channels in order to under-
stand the results of these experiments in quantitative detail.

Thus, we study here the hydrodynamics of a superfluid
confined in a two-dimensional region between two concen-
tric circular arcs, each of which subtends an angle � at their
common center. The annular region between the two arcs is
bounded on two sides by straight walls along the radial di-
rection. Thus, the special case with �=2� corresponds to a
ring that is blocked by a wall placed perpendicular to its
inner and outer peripheries. This two-dimensional geometry
corresponds, neglecting edge effects, to that used in many
experiments on supersolid behavior in 4He where the helium
is confined in the annular region between two concentric
cylinders, under the assumption that the cylinders are long
enough and the confined system is homogeneous along the
cylinder axis. In the limit of vanishing inner radius, the ge-
ometry we study corresponds to that of a wedge with open-
ing angle �. The limit �=2� in this case represents a circular
container with a straight blocking wall extending from the
center of the circle to its periphery.

We assume throughout the paper that the fluid is incom-
pressible, which is appropriate for superfluid helium. We first
consider the case where there are no vortices �so that the
superfluid flow is irrotational� and solve the hydrodynamic
equation for the velocity field for rotation about an axis per-
pendicular to the plane of the system and passing through the
common center of the arcs that form its boundary. The
sample geometry is reflected in the boundary conditions for
the velocity field. For incompressible and irrotational flow,
the velocity field can be expressed in terms of either a scalar
or a vector potential �stream function�, analogous to those in
electromagnetic theory, both of which satisfy the Laplace
equation with appropriate boundary conditions. The scalar
potential method is simpler and leads to series that converge
rapidly. We have used this method to obtain the velocity field
for �=2� and �=�. For a general value of �, however, the
stream function method, although more difficult in that it
leads to series that are not convergent, but Borel summable,
is more powerful. We have therefore used it to obtain the
velocity field for arbitrary �. We present analytic results for
the velocity field and the moment of inertia for arbitrary
values of the inner and outer radii and the opening angle �.
We also derive a simple “parallel axis” theorem that relates
the moment of inertia for rotation about any axis perpendicu-
lar to the plane of the system to the calculated value for
rotation about an axis passing through the center of mass.

In the context of experimental observations of NCRI in
solid 4He, the most important result of our study is about the
NCRI of a blocked ring. When the ring is blocked, the su-
perfluid cannot flow through it. However, due to the irrota-
tional nature of superfluid flow, the moment of inertia is
smaller than that for rigid-body rotation. Therefore, the drop
in the moment of inertia when the block is removed �the
superfluid does not contribute to the moment of inertia when
there is no block� is less than the rigid-body value. Our cal-
culations show that the moment of inertia of a blocked ring
whose width is small compared to its radius is very close to

its moment of inertia for rigid rotation, so that unblocking
the ring �i.e., the opening up of a closed path� produces a
large drop in the moment of inertia �nearly equal to its rigid-
rotation value�, which would show up in an experiment as a
relatively large value of the NCRI. Thus, the onset of NCRI
in experiments on solid 4He may correspond to the unblock-
ing of large closed paths in the network of defects along
which the superfluid component is supposed to exist. Our
results for the NCRI of a superfluid confined in a blocked
ring can be compared directly with those of experiments
�2,7� in which the NCRI of solid 4He confined in an annular
cell is measured both in the presence and in the absence of a
barrier that blocks flow around the annular channel. We show
that our results, when combined with accurate measurements
of the NCRI, can provide valuable information about the
structure of the superfluid network in solid 4He and discuss
the validity of our hydrodynamic description for superfluid
flow in narrow channels such as those along crystalline de-
fects in solid 4He.

An interesting result of our calculation is that the velocity
field for a wedge with ��� diverges at the tip of the wedge
for any nonzero value of the angular velocity �. This means
that the implicit assumption that the velocity field nowhere
exceeds the Landau critical velocity is in principle math-
ematically incorrect for these wedges: for any nonzero value
of �, there must be a region near the tip where the liquid is
in the normal state. We show that the size of the region
where this occurs is too small to have any measurable con-
sequence in 4He experiments performed with usual geom-
etries. This divergence of the velocity can be removed by the
presence of a single vortex. We calculate the position of this
vortex and the rotational inertia in its presence. Our calcula-
tions uncover also several interesting mathematical issues,
and we indicate ways of addressing them. Some of these
were also present in earlier studies �1� of superfluid hydro-
dynamics, while some are new. We discuss these questions as
they appear throughout the paper.

Whether vortices appear or not is in general determined
by the free-energy cost of creating a vortex. We will show
that for typical experiments on 4He, vortices do not occur for
sufficiently small angular velocities. However, as pointed out
in Ref. �1�, states with vortices present will have, at suffi-
ciently larger values of the angular velocity, a lower free
energy than the vortex-free state. We calculate the critical
angular velocity for vortex nucleation which turns out, for
typical 4He samples, to be in the experimentally important
range of angular velocities. We show how the rotational in-
ertia is modified by these vortex excitations. These results
are relevant for understanding the experimentally observed
dependence of the NCRI of “supersolid” 4He on the fre-
quency of torsional oscillations �6–8�.

The rest of this paper is organized as follows. In Sec. II,
we describe in detail our calculations. We present first two
alternative methods of calculating the velocity field in the
vortex free case and discuss the results obtained for this field
and the moment of inertia. We compare our results for the
NCRI with those of experiments on solid 4He in blocked
annular geometry and point out other implications of our
results for experimental studies of superfluidity. We then ex-
plain how to include vortices in our description and calculate
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the critical angular velocity for vortex nucleation. A sum-
mary of our results is presented in the concluding Sec. III.

II. RESULTS

A. Formulation of the problem

We consider, as explained above, superfluid flow in an
ideal cylinder, long enough in the z direction so that edge
effects are negligible and the problem quasi-two-
dimensional. The cross sections of the cylinders that we will
consider will be bounded by two concentric circular arcs of
radii a and b �with a�b� and encompassing an angle �. In
the limit b=0 the shape of this cross section is that of a
circular wedge. We will consider all values of �, 0��
�2�. It must be emphasized that the case �=2� is not the
same as that of a ring, since a boundary along a radius still
exists.

In the absence of vortices �the generalization to the case
when vortices are present will be discussed below� the su-
perfluid velocity field v�r� for an incompressible fluid satis-
fies

� · v�r� = 0, �2.1a�

� � v�r� = 0. �2.1b�

The boundary condition corresponding to superfluid rotation
around some center O with uniform angular velocity � is
that �1� the normal component of the fluid’s velocity at the
boundary must equal the normal component of the rigid-
body velocity ��r at that point. That is, the component of
v�r� along the outward normal n̂ to the boundary must equal,
at any point on the boundary, the component of ��r along
n̂ at that point:

v�r� · n̂ = �� � r� · n̂ , �2.2�

where r is a vector from O to a point on the boundary. The
point O is not necessarily the center of mass of the system: in
general, we will take it to be, for reasons of obvious compu-
tational convenience, the center of the arc or arcs that are
part of the boundaries of our system.

There are two obvious ways to solve Eqs. �2.1�. The first
is to introduce a scalar potential V�r� such that v�r�
=�V�r�. In that case V�r� satisfies the Laplace equation,
�2V�r�=0 and Eq. �2.2� is a Neumann boundary condition
on V. Alternatively, one can introduce a stream function
	�r� such that

vx = − �	/�y , �2.3a�

vy = �	/�x , �2.3b�

where one can think of 	 as the z component of a vector
potential �v�r�=−�� ẑ	�r��. It is obvious that 	�r� also
satisfies the Laplace equation �2	�r�=0. Now, however, the
boundary conditions are of the Dirichlet form �1�: at any
point in the boundary,

	�r� =
1

2
�r2. �2.4�

It turns out, as we will see, that for certain special values
of � such as � and 2�, the scalar potential method is much
simpler to use and leads to expressions for v�r� in the form
of rapidly convergent series which are very convenient.
However, for other values of �, this method becomes rather
awkward. The stream function method, on the other hand,
can be used for any value of �, but the resulting expressions
involve asymptotic series. These are, however, Borel sum-
mable and agree with the results obtained from V�r� in the
cases where the scalar potential method works well. For this
reason, we will first present here results obtained from V�r�
for �=2� and �=�, and then consider the general case us-
ing the stream function.

Once the velocity field is obtained, the angular momen-
tum �and hence the moment of inertia� can be calculated by
straightforward integration of the velocity field. In this way,
the depletion of the moment of inertia from its rigid-body
value is obtained. In general, our origin O is not the center of
mass �c.m.� of the system: therefore, it is important to dis-
cuss an interesting property of the nature of the parallel-axis
theorem shift in the superfluid case. If one considers the
moment of inertia of the superfluid with respect to the c.m.,
ISF

c.m., one finds, of course, that it is always smaller than that
of the corresponding rigid object �RO� of the same shape and
density, IRO

c.m.. Indeed, for the case of a circle ISF
c.m. vanishes.

With respect to an arbitrary origin O one has for the super-
fluid a total moment of inertia ISF

T = ISF
c.m.+ ISF

PA, where the last
term is the parallel axis shift. The key point here is that this
shift is the same as that for the rigid object. One has

ISF
PA = IRO

PA . �2.5�

The proof of this theorem is very simple: the problem, as
defined by the above equations and boundary conditions, is
linear. If one shifts the origin from the c.m. to a point a
distance R away from it, the velocity field of the boundaries
shifts to v= �r+R���. In view of this, the linearity of the
problem, and the boundary condition, Eq. �2.2�, the solution
of the shifted problem is the velocity field computed with
respect to rotations around the c.m., plus a uniform velocity
field R��. This second field trivially satisfies the equations
and takes care of the additional term in the boundary condi-
tion. But it is trivial to verify that such a constant field leads
simply to a parallel-axis theorem shift in the moment of in-
ertia equal to that for the corresponding rigid object. This
applies irrespective of the shape of the object: it is not lim-
ited to the wedge shapes considered here. It is straightfor-
ward to check by direct calculation that it applies, for ex-
ample, to the ellipsoidal shapes of Ref. �1�. This theorem has
physical consequences: since the parallel-axis shift cannot be
“depleted” from its RO value by the superfluid flow, in gen-
eral the fractional depletion of ISF will always be largest
when the rotation is around the c.m.

B. Scalar potential method for �=2� and �=�

To illustrate the results, let us first turn to the simplest
case where �=2�, b=0 �a circle with a wall along its ra-
dius�. For this case, one can very simply use the scalar po-
tential method. We write, in polar coordinates,
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V�r,
� = �
m�1

amrm/2 sin�m
/2� + �
m�1

bmrm/2 cos�m
/2� .

�2.6�

With the radial wall set along the 
=0 direction, the azi-
muthal component of the velocity,

v
�r,
� = �
m�1

m

2
amrm/2−1 cos�m
/2�

− �
m�1

m

2
bmrm/2−1 sin�m
/2� , �2.7�

must equal �r at 
=0. This immediately tells us that all the
am vanish except a4, which equals � /2. The radial compo-
nent is then

vr�r,
� = �r sin�2
� + �
m�1

m

2
bmrm/2−1 cos�m
/2� .

�2.8�

At r=a we have vr=0 and from this one obtains that all the
bn with even n are zero, while for odd n

bn =
32�a

�n�n2 − 16�an/2−1 . �2.9�

From these and Eqs. �2.7� and �2.8� we have the final result
for the velocity field:

vr�r,
� = �r sin�2
� +
16�a

�
�

n�0,n odd
�n/2−1

�
1

n2 − 16
cos�n
/2� , �2.10a�

v
�r,
� = �r cos�2
� −
16�a

�
�

n�0,n odd
�n/2−1

�
1

n2 − 16
sin�n
/2� , �2.10b�

where ��r /a.
Two remarks are needed about these simple results: first,

the series involved are very rapidly convergent. Second, the
velocity components have a square-root singularity at the
origin. Mathematically, the singularity is integrable and al-
lows for the formal calculation of the moment of inertia.
Physically, the relevant number is the value of r at which the
velocity would exceed the Landau critical velocity vc. For
liquid 4He, vc�2.5�104 cm /s �19�, and in typical experi-
ments on supersolid behavior, the maximum value of � is
less than 0.1 s−1 �see, for example, �2,6��. This would mean
than only at values of r /a around 10−11 would vc be ex-
ceeded. Such small values of r would not have any experi-
mentally measurable consequence �the hydrodynamic de-
scription we use would not even apply to such length scales�.
Also this divergence is not present for nonzero values of the
inner radius b and the inner radius is finite �of order 10−1 cm�
in torsion and rotation experiments. Thus, this divergence is
not important for 4He. This divergence may have observable

consequences in Bose-Einstein condensates �BECs� in cold
atomic systems �12,13�, although our incompressibility and
uniform density assumptions are not applicable to BECs in
cold atomic systems, where the high compressibility and the
confining potential introduce substantial variations in the
density. We show later that the divergence discussed above is
present in blocked wedges for all values of � greater than �.
The effects of this divergence are discussed in Secs. II D and
II E

The angular momentum is obtained by integration of rv


over the sample, and the moment of inertia is just the ratio of
the angular momentum and the angular velocity �. We will
use units in which the areal mass density is unity. We obtain
the result

ISF = −
128a4

�
�

n�0,n odd

1

n�n2 − 16��n + 4�
, �2.11�

which, after numerically evaluating the rapidly convergent
series, gives ISF=0.693a4. Thus we have for this obstructed
circle

ISF

IRO
� 0.441. �2.12�

The same method can be used at �=�. In that case the
only significant difference is that in the expression for V�r�
one must write

V�r,
� = �
m�1

amrm sin�m
� + �
m�1

bmrm cos�m
� .

�2.13�

As before, all the coefficients an are determined from the
boundary conditions on v
 at 
=0 and 
=�. Both are sat-
isfied if all an vanish except a1=� /2. The bn are determined
then from the boundary condition on vr. The result for the
velocity field is

vr�r,
� = �r sin�2
� +
8�a

�
�

n�0,n odd
�n−1 1

n2 − 4
cos�n
� ,

�2.14a�

v
�r,
� = �r cos�2
� −
8�a

�
�

n�0,n odd
�n−1 1

n2 − 4
sin�n
� .

�2.14b�

The series are again convergent, and now the previously
found integrable singularity at the origin is absent. The mo-
ment of inertia with respect to the origin is

ISF = −
16a4

�
�

n�0,n odd

1

n�n2 − 4��n + 2�
. �2.15�

Numerically, we have ISF=0.488a4, which gives a ratio
ISF / IRO=0.621, a value higher than that for the circle. How-
ever, we must recall that in this case O is not the c.m. and
that �as shown above� there is no reduction in the parallel
axis term so that from the point of view of the c.m. the
reduction must be larger. Indeed one finds that
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ISF
c.m.

IRO
c.m. = 0.41, �2.16�

which is actually a little less than that for the circle.
One can see that it is awkward to extend this simple pro-

cedure to other values of �. If one sets for example �
=� /2 and doubles again the angles and powers in the ex-
pression for V�r�, one finds that it is not possible to satisfy
the boundary condition for v
 at 
=0 and 
=� /2 from a
single term in the first sum �the an coefficients� in the poten-
tial. Similar difficulties are found at, e.g., �=3� /2. Although
these difficulties should not be unsurmountable, we will in-
stead use the stream function method in the general case and
deal appropriately there with the mathematical difficulties
associated with the asymptotic series that then result.

However, one can easily generalize this simple procedure,
for the above values of �, to the physically more relevant
case where b�0. We will consider here the important case
of an obstructed ring, �=2�. In that case one simply has to
add to the potential in Eq. �2.6� the appropriate negative
powers of r. The coefficients are then found from the bound-
ary conditions on vr at r=a and r=b. One then obtains the
velocity fields

vr�r,
� = �a� sin�2
� +
16�a

�
�

n�0,n odd
cos�n
/2�

�
1

�1 − cn��n2 − 16���n/2−1fn�c� −
gn�c�
�n/2+1	 ,

�2.17a�

v
�r,
� = �a� cos 2
 −
16�a

�
�

n�0,n odd
sin�n
/2�

�
1

�1 − cn��n2 − 16���n/2−1fn�c� +
gn�c�
�n/2+1	 .

�2.17b�

where c�b /a�1, fn�c�=1−cn/2+2, and gn�c�=cn−cn/2+2.
Plots of the fields given by Eqs. �2.17� are shown in Fig. 1.
All the plots in the figure are for c=0.5, a value in the region
where, as we shall see below, NCRI effects are found to be
largest. In the first panel, the vector field is displayed in two
dimensions over the entire sample. The units of velocity are
arbitrary, but the overall pattern of the field is then clearly
shown. In the second and third panels we show a plot of vr
�in units of �a� vs r �in units of a� at several values of the
azimuthal angle 
 and a plot, in the same units, of v
 vs 
 at
several values of r. One can see that the boundary conditions
are satisfied.

The moment of inertia of the superfluid blocked ring is

ISF = −
128a4

�
�

n�0,n odd

1

n�n2 − 16��1 − cn�

�� 1

n + 4
fn

2�c� −
1

n − 4
gn

2�c�	 . �2.18�

The behavior of this quantity as a function of aspect ratio c is
well worth noting. In the first panel of Fig. 2 we plot the ratio
R� ISF / IRO, for a blocked ring of aspect ratio c, vs c. As
noted above, the value for c=0 �blocked circle� would,
strictly speaking, have to be corrected, but the range of c
affected by this is negligible. The ratio R increases very
quickly with c: at c=1 /2 it already reaches 0.875, while at

−1.2 −0.8 −0.4 0 0.4 0.8 1.2
−1.2
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a
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0
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0.85

0.9

v Φ

FIG. 1. �Color online� The velocity field for a
blocked ring with c=0.5. The first panel shows
the relative strengths of the velocity field as a
function of position. The second panel is the ra-
dial component �in units of �a� plotted vs �
�r /a at azimuthal angles 
 �from bottom to top�
of � /16, � /8, � /4, 7� /4, 15� /8, 31� /16. The
third panel, in the same units, shows the azi-
muthal component of the velocity vs 
 at �
=0.6,0.75,0.9.
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c=0.75 it exceeds 97%. We see, therefore, that a narrow
superfluid circular channel rotating about its center behaves
essentially like a rigid body when it is blocked. Since, when
unblocked, its moment of inertia vanishes, we see that in
such a channel there will be a sharp discontinuity in I as it is
blocked or unblocked. In a sample containing a number of
such channels, discontinuities or glitches in I will occur as
the channels are blocked or unblocked. As c→1, R→1 and
the unblocking would drop R from 1 to 0, the maximum
amount. One should recall, however, that I vanishes at c=1
for both the superfluid and the rigid body. In an experimental
situation one would measure the difference in I with the
channel blocked and unblocked, which is ISF itself. This
quantity has a broad maximum centered around c�0.52 as
one can see in the second panel of Fig. 2. There we plot ISF
itself in units such that a is unity. From this plot one can see
that the important experimental contribution would come
from a range of rings with c values in the region 0.2–0.8.

C. Stream function method for arbitrary �

As discussed in Sec. II A, the velocity field can be written
in terms of a stream function 	�r� that satisfies the Laplace
equation with Dirichlet boundary conditions �see Eqs. �2.3�
and �2.4��. Following Ref. �1�, the general solution for 	�r�
for arbitrary � can be written as

	�r� =
1

2
�
 dl�r�2n� · ��G�r�,r� , �2.19�

where the line integral �dl� is over the boundary of the sys-
tem, n� is a unit vector along the outward normal to the
boundary, and G�r ,r�� is the Green’s function for the La-
placian operator, satisfying the equation

�2G�r,r�� = 
�r − r�� , �2.20�

and the boundary conditions G�r ,r��=0 for all r on the
boundary of the system. Thus, 	�r�, and hence, the velocity
field, can be obtained from Eq. �2.19� once an expression for
the Green’s function, satisfying Eqs. �2.20� and its boundary
condition, is obtained.

As in Sec. II B, we first consider, for simplicity, the case
b=0, which corresponds to a wedge of radius a and opening
angle �. The Green’s function in this case is easily obtained
�20� to be

G�r,
;r�,
�� = −
1

�
�
n=1

�
1

n
r�

n�/�� 1

r�
n�/� −

r�
n�/�

a2n�/�

�sin�n�
/��sin�n�
�/�� , �2.21�

where r� �r�� is the larger �smaller� one of the two radial
coordinates r and r�. Using this in Eq. �2.19�, we obtain the
following expression for the stream function 	�r�:

	��r,
� =
2�a2

�
�

n�0,n odd
sin�n�
/��� n�2/�2

n2�2/�2 − 4

��− � r

a

n�/�

+
r2

a2	 +
1

n
� r

a

n�/�� . �2.22�

The radial and azimuthal components of the velocity field,
obtained from 	��r ,
� through Eqs. �2.3�, are given by

vr�r,
� =
2�a2

�r
�

n�0,n odd
�n�

�

cos�n�
/��

� � n�2/�2

n2�2/�2 − 4
�� r

a

n�/�

−
r2

a2	 −
1

n
� r

a

n�/�� ,

�2.23a�

v
�r,
� =
2�a2

�
�

n�0,n odd
sin�n�
/���2r

a2

n�2/�2

n2�2/�2 − 4

−
n�

�r
� r

a

n�/�� n�2/�2

n2�2/�2 − 4
−

1

n

	 . �2.23b�

Calculation of the velocity field for �=� /2 requires some
care because the denominators of some of the terms in Eqs.
�2.23� go to zero for �=� /2 and n=1. The numerators also
vanish for these values of � and n, so that finite contributions
that vary smoothly with � across � /2 are obtained for the
velocity components. Similar behavior is found for �
=3� /2 for which the n=3 term in the denominators in Eqs.
�2.23� vanishes. These results also exhibit, for ���, a sin-
gularity r�/�−1 as r→0, which can be readily seen from Eqs.
�2.23� to arise from the n=1 term in the sum. This is in
agreement with what we found from the scalar potential
method. As discussed in detail in the previous subsection,
this divergence is not physically relevant for 4He, but may
have observable consequences in experiments on cold atomic
systems. Its possible physical effects are discussed in Secs.
II D and II E. This singularity is always integrable: therefore,
the angular momentum of the superfluid about the origin �tip
of the wedge� is easily calculated for all � using these ex-
pressions for the velocity components. The result for the mo-
ment of inertia about O is
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I S
F

FIG. 2. Moment of inertia of an obstructed ring in terms of its
aspect ratio c�b /a. In the top panel the ratio R of ISF �Eq. �2.18��
to the rigid-body value is plotted, while in the bottom panel we plot
ISF itself, in units such that a=1. The maxima in the two plots are at
different values of c.
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ISF =
2a4

�
�

n�0,n odd

1

n
�n�

�
+ 4
 1

�n�/� + 2�2 . �2.24�

For the case �=2�, the moment of inertia about the origin is
given by the infinite series

ISF�� = 2�� =
4a4

�
�

n�0,n odd

1

n

n + 8

�n + 4�2 . �2.25�

This infinite series appears to be different from the one in Eq.
�2.11�, which was obtained using the scalar potential method.
In particular, the series in Eq. �2.25� converges more slowly
than the one in Eq. �2.11�. However, it can easily be shown
that these two expressions for the moment of inertia are
mathematically identical. We have also checked that a simi-
lar situation applies when the results for the moment of in-
ertia obtained from Eqs. �2.23� for �=� are compared to
those obtained in the preceding section using the scalar po-
tential method.

However, the situation is much more complicated when,
instead of comparing the moments of inertia, one compares
directly the velocity fields obtained by the two methods. In
this case it is not sufficient to add or subtract a series that
converges to zero. The reason is that while the series in Eqs.
�2.10� converge for all angles 
 and for any r�0, those in
Eqs. �2.23a� and �2.22� do not. This question is related to
other technical difficulties with the result �2.22� and, in gen-
eral, with the stream function method, which we will further
address below.

The moment of inertia of the wedge for rigid-body rota-
tion about O is IRO=�a4 /4, and its moment of inertia for
rigid-body rotation about its c.m. is given by IRO

c.m.= IRO− IRO
PA

with IRO
PA =8a4 sin2�� /2� / �9��. Using these results and Eq.

�2.24�, we have calculated the ratios ISF / IRO and ISF
c.m / IRO

c.m. as
functions of the angle �. The results are shown in Fig. 3.
These ratios are of course less than unity, the level of sup-
pression being given by the NCRI effect. In the figure we see
that this fractional suppression is always larger in the c.m.
frame; that is, ISF / IRO is always higher than ISF

c.m. / IRO
c.m., except

of course at �=2�, where the two are the same. This is in
agreement with the theorem proved at the end of Sec. II A. It

is interesting that the ratio ISF
c.m. / IRO

c.m. is not a monotonic func-
tion of �—it exhibits a minimum at �=� /2.

A representative plot of the velocity field for a wedge with
�= �7 /8�2� is shown in Fig. 4. The velocity vector field is
plotted in arbitrary relative units, as in the first panel of Fig.
1. It is instructive to compare that panel with Fig. 4. In the
earlier case we have c=0.5, whereas in Fig. 4 we have a
wedge c=0. The rise in the absolute value of the velocity as
r→0 can now be seen. On the other hand, the behavior of of
vr as a function of 
 is clearly very similar: it follows from
the second panel of Fig. 1 that vr is very small except for
angles near the radial boundaries, and this is clearly the case
also for this c=0 wedge. The behavior of v
 with 
 is also
quite similar.

We now return to the technical difficulties with the gen-
eral solution for the velocity field obtained above via the
stream function. As noted in Sec. II A, the quantity 	�r ,
�
should be equal to �r2 /2 at all points on the boundary and
the physical velocity field should satisfy the boundary con-
ditions v
�r ,
�=r� for 
=0,� and vr�r ,
�=0 for r=a. It is
easily seen from Eqs. �2.22� and �2.23b� that both 	�r ,
�
and v
�r ,
� vanish for 
=0 and 
=� �since sin�n�
 /��
=0 for these values of 
�. Thus the boundary condition on
the radii appears to be violated even though the construction
of the vector potential via the Green’s function would seem
to ensure that it will not be. As to Eq. �2.23a� for the radial
component of the velocity, it can be written as

vr�r,
� =
8�a2

�r
�

n�0,n odd
cos�n�
/��

1

n2�2/�2 − 4

��� r

a

n�/�

−
r2

a2	 −
2�r

�
�

n�0,n odd
cos�n�
/�� .

�2.26�

While the first term on the right-hand side of this equation
vanishes for r=a, the second term does not. Thus, this com-
ponent also appears not to satisfy the required boundary con-
ditions. Numerically, however, we have found that these
quantities do approach values consistent with the required
boundary conditions as the boundaries are approached from
inside, but there is a discontinuity as the boundary is ap-
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FIG. 3. �Color online� The ratios ISF / IRO �upper curve� and
ISF
c.m. / IRO

c.m. �lower curve� for a superfluid wedge as a function of the
opening angle �, 0���2�. ISF is calculated from Eq. �2.24�.
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FIG. 4. �Color online� Plots of the velocity field inside the
wedge for �= �7 /8�2�. This should be compared with the first
panel of Fig. 1.
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proached and the values exactly at the boundaries do not
satisfy the boundary conditions. This does not affect the cal-
culated values of the angular momentum and the moment of
inertia because these quantities are not sensitive to the values
of the velocity components exactly at the boundary.

However, this numerical argument is not fully satisfac-
tory. Fortunately there are better ones. First, one can see that
this behavior is associated with the nonconvergence of the
series. The last term in Eq. �2.26�, for example, is not merely
nonzero: the series that it contains is not convergent, while
that in the first term is. Indeed, the rearrangement of terms
leading from Eq. �2.23a� to Eq. �2.26� isolates just this non-
convergent part. However, by rewriting the cosines in terms
of exponentials one can verify that the series in the last term
of Eq. �2.26� is Borel summable �22� �and also Euler sum-
mable� with the result being zero. With this proviso, Eq.
�2.26� satisfies the boundary condition analytically. Similar
arguments can be made for 	� and for the azimuthal com-
ponent of the velocity.

This mathematical problem can also be solved by redefin-
ing the stream function as

	�r,
� → 	�r,
� −
2�r2

� � �
n�0,n odd

1

n
sin�n�
/�� −

�

4 	 ,

�2.27�

where the first term on the right-hand side is that given by
Eq. �2.22�. The second term on the right-hand side, which is
subtracted from the old expression, is zero for all points in-
side the wedge �21� and is equal to −�r2 /2 for 
=0,�.
Therefore, the subtraction of this quantity does not affect the
behavior of 	�r ,
� inside the wedge �where it still satisfies
the Laplace equation�. At the same time, the redefined
	�r ,
� satisfies the required boundary condition for 

=0,�. The new term leads to the following additional terms
in v
 and vr:

v
�r,
� → v
�r,
� −
4�r

� � �
n�0,n odd

1

n
sin�n�
/�� −

�

4 	 ,

�2.28�

where again the first term on the right-hand side is the pre-
vious result, in this case Eq �2.23b�. The added quantity is
zero at all points inside the wedge and is equal to �r for

=0,�, so that the required boundary conditions for these
values of 
 are now satisfied. The equation for vr becomes

vr�r,
� → vr�r,
� +
2�r

�
�

n�0,n odd
cos�n�
/�� .

�2.29�

The new term, added to Eq. �2.23a�, cancels the “offending”
second term in Eq. �2.26�, so that the redefined vr satisfies
the required boundary condition at r=a.

A similar problem with boundary conditions is also
present in the solution given in Ref. �1� for the velocity field
inside a cylinder with a rectangular cross section. The ex-
pression for the stream function given in Eq. �62� of Ref. �1�
does not in fact satisfy the required boundary conditions

posed there at all points on the boundary. As in the case
considered here, this does not affect the results for the cal-
culated physical quantities in Ref. �1� and this mathematical
problem can be cured by the addition of a term similar to the
one considered above.

The above calculations can be modified readily to treat a
superfluid confined in the annular region between two con-
centric arcs with radii a and b �a�b�. The Green’s function
in this case has the form

G�r,
;r�,
�� = −
1

�
�
n=1

�
1

n

1

1 − �b/a�2n�/��r�
n�/� −

b2n�/�

r�
n�/� 


� � 1

r�
n�/� −

r�
n�/�

a2n�/�
sin�n�
/��sin�n�
�/�� .

�2.30�

In this case one does not have to worry about the behavior as
r→0. Asymptotic series in the summations over n are again
encountered and handled as in the preceding case. Using this
in Eq. �2.19�, the stream function 	�r ,
�, and from it, the
radial and tangential components of the velocity are ob-
tained. We skip the long expressions for these quantities and
quote the final result for the moment of inertia about the
origin:

ISF = IRO −
16a4

�
�

n�0,n odd

1

xn
2�xn

2 − 4�� xn
2 + 4

2�xn
2 − 4�

�1 − c4�

−
2xn

xn
2 − 4

1

1 − c2xn
��1 + c4��1 + c2xn� − 4c2cxn�	 .

�2.31�

Here, xn=n� /�, c=b /a, and IRO=��a4−b4� /4 is the mo-
ment of inertia for rigid-body rotation. We have checked that
this expression reduces to that in Eq. �2.24� for b=0 and to
that in Eq. �2.18� for �=2�. In Fig. 5, we show results for
the NCRI in an annular wedge, as obtained from Eq. �2.31�.
The plots are the same as in Fig. 3 except that now we have
c=0.5; in other words, the fields are as in Fig. 1. Again, the
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FIG. 5. �Color online� The ratios ISF / IRO �upper curve� and
ISF
c.m. / IRO

c.m. �lower curve� for an annular wedge �Eq. �2.31�� plotted as
a function of the opening angle �, 0���2�, at a fixed value of
c=0.5.
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fractional suppression is larger, as it must be, in the c.m. and
it exhibits a maximum as a function of �.

The results derived above have a direct relevance to tor-
sional oscillator experiments on solid 4He �2,7� in which the
helium is confined in the annular region between two con-
centric cylinders and the NCRI is measured both in the pres-
ence and in the absence of a barrier that prevents flow around
the annulus. If the NCRI in the absence of the barrier is due
to superflow along a closed channel surrounding the rotation
axis �the common axis of the inner and outer cylinders�, then
the measured value of the NCRI when the barrier is not
present should be ��I�open=�sIRO, where �s is the supersolid
fraction and IRO the rigid-body moment of inertia of the
channel of flow about the rotation axis. The NCRI in the
presence of the barrier should be given by ��I�closed=�s�IRO
− ISF� where, if this channel is approximately circular, ISF is
the moment of inertia of a blocked superfluid ring calculated
above. Thus, the ratio R����I�closed / ��I�open should be
equal to �IRO− ISF� / IRO=1−R, where R� ISF / IRO depends
�see Eq. �2.18� and Fig. 2� on the value of c=b /a. If the
superfluid component were distributed homogeneously
throughout the sample, then a and b would be the outer and
inner radii of the annular cell. Whether this is the case can be
determined by comparing the experimentally measured value
of R� with 1−R0, where R0 is the value of R obtained from
Eq. �2.18� using these values of a and b. If the superfluid is
instead confined in a channel �or in several separate chan-
nels� with width substantially smaller than that of the annular
cell, then R� should be smaller than 1−R0 because R in-
creases as the width of the ring is decreased �see Fig. 2�.

In the experiment of Ref. �2�, a=0.75 cm and b
=0.64 cm, so that 1−R0=0.008 17. The experimental value
of R� is 0.015, which is within a factor of 2 of 1−R0, but
surprisingly, it is higher. However, the value of ��I�open ap-
propriate for the blocked cell was evaluated from the results
of a different experiment using another cell, so that the
quoted value of R� may not be very accurate. Also, a value of
R� larger than 1−R0 may be rationalized by assuming that
the sample contains a large number of narrow superfluid
channels, most of which do not form closed paths around the
annulus �i.e., have ��2��. These “naturally blocked” chan-
nels make small contributions to the net sample NCRI. These
contributions are not strongly affected by the imposition of
the external barrier, which can change the value of � for the
channels it intersects: our calculation shows that R= ISF / IRO
for narrow annular wedges with ��2� is rather insensitive
to �. Since these channels contribute almost equally to
��I�open and ��I�closed, the value of the ratio R� would in-
crease.

More recently, both ��I�open and ��I�closed have been mea-
sured using the same cell �7�. In this experiment, two cells,
both with a=0.794 cm and b=0.787 and 0.745 cm, were
used. In both cases the NCRI in the blocked configuration
was found to be smaller than the resolution of the experi-
ment. This is consistent with our calculated values of 1−R0,
which are 2.9�10−5 and 1.3�10−3, respectively. Although
the measurements are not sufficiently accurate to provide
more detailed information about the channels of superflow, it
is clear that more accurate measurements of R� for samples
with different a and b, combined with the results of our

calculations, would be very useful for elucidating the geom-
etry of superfluid channels in solid 4He.

If the superfluid channels are very narrow, the validity of
the hydrodynamic description used here �and elsewhere �2��
might be questioned. However, recent numerical studies
�10,11� indicate that the diameter of the superfluid region
near the core of a dislocation and the width of the superfluid
layer along a grain boundary are of the order of a few na-
nometers ��10 interparticle spacings�. These values of the
superfluid layer width are likely to be lower bounds, since
superfluid channels of such small lateral dimensions cannot
explain the relatively large superfluid density measured in
recent torsional oscillation experiments �7�. It has been sug-
gested �23� that the effective lateral dimension of the super-
fluid region near a crystalline defect may be larger due to a
kind of “proximity effect,” as in superconductors. Also, stud-
ies �24� of the thermodynamics of a system of interacting
vortex lines in type-II superconductors, which can be
mapped to the zero-temperature quantum mechanics of a
two-dimensional system of interacting bosons, show that the
width of grain boundaries can exceed 15–20 interparticle
spacings in some cases. A hydrodynamic description should
be valid if the width of the typical superfluid regions is of
order �10 interparticle spacings or more: this has been well
established quantitatively in several numerical studies of the
flow properties of classical liquids through narrow channels
�25,26�. The same should to be true for superfluid 4He be-
cause its coherence length is very small.

A related effect that needs to be considered if the super-
fluid channel along a crystal defect is very narrow is the
modulation of the density of the superfluid due to the poten-
tial arising from the surrounding crystalline region. We ex-
pect our calculations to be valid in the presence of such
density modulations because the hydrodynamic equation for
a rotating superfluid derived �for low angular speed� in a
recent study �27� in which superfluidity is assumed to coexist
with a periodic modulation of the density �Eq. �8� of Ref.
�27�� is identical to that used in our calculation.

D. Formation of vortices in a wedge with ���

As noted above, the velocity field obtained from a calcu-
lation in which it is assumed to be irrotational exhibits a
divergence as r→0 for a wedge with ���. Thus vc must be
exceeded near r=0, implying that either there is a region of
normal fluid near the tip of the wedge or a vortex is present
in the system. As we have indicated, this issue is unimportant
in torsional oscillation experiments because the region of
normal fluid near the tip would be unobservably small for
experimentally relevant parameter values. It is, however, in-
teresting to inquire about the behavior in the general case.
We show here that this divergence in the velocity field is
eliminated by the introduction of a single vortex.

From symmetry, the vortex must be located along the line

=� /2. Let the position of the vortex be �rv ,� /2�. The pres-
ence of a vortex of circulation � �=h /m, where h is Planck’s
constant and m is the mass of a particle of the fluid� at
�r� ,
�� leads to an additional term �G�r ,
 ;r� ,
�� in the
expression for the stream function 	�r ,
� where
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G�r ,
 ;r� ,
�� is the Green’s function given in Eq. �2.21�
�see Sec. 3 of Ref. �1� for a derivation of this result�. This
additional term in 	�r ,
� �with r�=rv, 
�=� /2� leads to the
following additional term in the expression for the radial
component of the velocity near r=0:

vr�r,
� = vr
0�r,
� +

�

�r
�
n=1

�

rn�/�� 1

rv
n�/� −

rv
n�/�

a2n�/�

�cos�n�
/��sin�n�/2�

� vr
0 + vr

1, �2.32�

where vr
0�r ,
� is the curl-free result as given by Eqs. �2.29�.

The n=1 part of the additional term cancels the divergent
n=1 contribution of the previous expression if

�� 1

rv
�/� −

rv
�/�

a2�/�
 = 8�a2−�/� 1

4 − �2/�2 . �2.33�

It is easy to check that the divergence in the expression for
the azimuthal component of the velocity is also removed if
this condition is satisfied. Defining �rv /a��/���, the solution
of Eq. �2.33� is �= ��4+�2−�� /2, where

� �
8�a2

��4 − �2/�2�
� 0. �2.34�

One sees that � has the nice property that 0���1 for any
value of �. The value of � changes from 1 to 0 as the dimen-
sionless parameter ���a2 /� increases from zero to a large
value; i.e., the vortex moves inward from the rim of the
wedge to its tip as the angular velocity increases.

Using the expressions for the radial and tangential com-
ponents of the velocity in the presence of a vortex, the total
angular momentum of the superfluid can be calculated. The
presence of the vortex increases the angular momentum
about the origin by the amount Lv and the moment of inertia
for rotation about the origin by IV=LV /�. Using the result
for the vortex position, this can be written as

IV =
64a4

�

1

�4 − �2/�2���a/rv��/� − �rv/a��/��

� �
n�0,n odd

�− 1��n+1�/2 1

n�4 − n2�2/�2�

��� rv

a

2

− � rv

a

n�/�	 . �2.35�

In the presence of the vortex, the moment of inertia about the
origin is �ISF+ IV� where ISF is given by Eq. �2.24� and IV is
given by the equation above. The value of rv /a to be used in
this equation is given by the solution of Eq. �2.33�. Since the
vortex position rv depends on the angular speed �, the value
of IV also depends on �.

Although the divergence in the velocity field at small r is
eliminated by the introduction of a vortex, the free energy of
the state with this vortex is not necessarily lower than that of
the vortex-free state with a small region of normal fluid near
r=0. Specifically, in experimental situations �e.g., in experi-
ments on solid 4He discussed above� where the dimensions

of the region of normal fluid are extremely small, the free-
energy cost of creating the normal region is negligible and
the free-energy cost of creating a vortex is the deciding fac-
tor in determining whether a vortex will be present. We
therefore calculate, in the following subsection, the free en-
ergy of a state with a single vortex.

E. Free energy of a vortex and critical angular velocity
for vortex nucleation

In the free-energy calculation, we consider the general
case of a ring with b�0. The angular speed �1 at which
nucleation of a first vortex will occur can be determined
from free-energy considerations. The free energy F is given
�1� in terms of the energy E and the angular momentum L as

F = E − L� . �2.36�

We will denote here with a subscript 0 the quantities F, E,
and L in the vortex-free state and with a 1 subscript those in
the presence of one vortex. As stated in the preceding sub-
section the stream function in the presence of a vortex is

	1�r� = 	0�r� + �G�r,r�� � 	0 + 	1, �2.37�

where G�r ,r�� is the Green’s function given in Eq. �2.30�
and r� is the vortex position with coordinates r� ,
�. From
symmetry considerations 
�=� /2 and the equilibrium radial
position of the vortex, r�=rv, is to be determined from free-
energy minimization. The velocity field and the angular mo-
mentum in the presence of a vortex can be readily obtained
from the stream function of Eq. �2.37�. The angular momen-
tum is given by

L1 = L0 + �a2C , �2.38�

where the dimensionless quantity C has the following ex-
pression:

C =
8

�
�

n�0,n odd
�− 1��n+1�/21

n

1

4 − xn
2

1

1 − c2xn
��r�/a�2�1 − c2xn�

− �r�/a�xn�1 − cxn+2� − �ca/r��xn�c2 − cxn�� , �2.39�

with xn=n� /�.
It is not hard to see explicitly that G�r ,r�� has, as ex-

pected, a logarithmic singularity at r�, so that we can write

G�r,r�� =
1

2�
ln��r − r��/�� + g�r,r�� , �2.40�

where � is the radius of the vortex core and g�r ,r��, the
nonsingular part of the Green’s function, satisfies the Laplace
equation. As shown in Ref. �1� �see also Ref. �28��, the en-
ergy in the presence of a vortex can be written as

E1 =
1

2
L1� +

1

4
��r�2 −

1

2
�	0�r�� −

1

2
�2g�r�,r�� .

�2.41�

After some algebra, the nonsingular part of the Green’s func-
tion appearing in Eq. �2.41� is obtained as
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g�r�,r�� =
1

2�
ln� ��

2�r�

 −

1

�
�

n�0,n odd

1

n

1

1 − c2xn
�2c2xn

− �r�/a�2xn − �ca/r��2xn� , �2.42�

where xn=n� /�. Using Eqs. �2.38�, �2.39�, �2.41�, and
�2.42�, the free energy in the presence of a vortex at �r� ,� /2�
may be obtained. The results depend on the vortex core size
via the logarithmic dependence on a /� mentioned above.
One then minimizes F1 with respect to r� to obtain its opti-
mal value rv and compares F1 and F0 to find the overall
equilibrium state. This depends on the value of � and, for
sufficiently small �, it is the vortex-free state, while for �
��1 the one-vortex state first becomes favorable. In prac-
tice, these calculations can be done only numerically, but the
computations are not difficult. The relevant dimensionless
parameter is the quantity �=�a2 /� defined in the preceding
section. This parameter is the ratio of the characteristic scale,
�a, of the velocity field v0 due to the rotation alone and the
scale of the additional velocity field v1 due to the vortex,
which is � /a. One needs also to input the value of � /a for
which we take the physically reasonable value of 10−7 ap-
propriate for liquid 4He.

Results for �1 computed for a blocked annular ring ��
=2�� are given in Fig. 6. There we plot the critical value of
� versus the aspect ratio c. We see that at reasonably small or
intermediate values of c the critical value of � is in the range
10–50 corresponding to angular speeds in the general range
of 10−1 /s, which is in the experimentally relevant region. At
large values of c this quantity increases, reflecting that the
system is behaving more like a rigid body, in which case the
formation of vortices is obviously less favorable. A similar
trend was seen for progressively flatter ellipsoids in Ref. �1�.
This implies that one need not worry about the formation of
vortices in narrow blocked rings and wedges while estimat-
ing the contribution of these objects to the NCRI of the sys-
tem.

In Fig. 7, we show the texture of the velocity field v1 due
to the nucleated vortex alone at c=0.5 and at a value of �

slightly higher than its critical value, which at this value of c
is �1�20 �see Fig. 6�. The calculated optimal position of the
vortex at these values of � and c is rv /a=0.74. This position
is marked by a �blue� circle in the plot. The fields in this
figure should be combined with those in the top panel of Fig.
1. One should recall that both plots are in arbitrary units, so
that before plotting the combined field one should divide the
fields in Fig. 7 by ��20 to take into account their overall
smaller relative scale. If that were done, however, then the
plot would be very hard to distinguish with the naked eye
from that in the top panel of Fig. 1.

The moment of inertia of a ring in the presence of a nucle-
ated vortex may be calculated from Eqs. �2.38� and �2.39�.
The results deviate from those obtained for the vortex-free
state only by a correction of order 1 /�. For ���1 this is
therefore significant only at small values of c. At c→0 we
find, for example, that, at �=2�, the moment of inertia of a
blocked wedge �c=0� increases by about 8.3% as a vortex is
nucleated at �=�1 and the increase in the moment of inertia
due to the nucleation of a vortex becomes less than 1% for
c�0.33.

The optimal value rv of the radial coordinate of the vortex
obtained from free-energy minimization is quite different
from the value for which the velocity due to the vortex can-
cels the mathematical singularity at r=0 found in wedges
with ���. This implies that the velocity field would for-
mally diverge at r=0 in such systems even when a vortex is
present at the position corresponding to the minimum of the
free energy. As noted above, this mathematical singularity
does not have any physical consequence in usual experi-
ments on 4He. However, this interplay between the require-
ments of keeping the velocity below the Landau critical
value and minimizing the free energy may lead to nontrivial
behaviors in other experimentally accessible situations such
as Bose-Einstein condensates in cold atomic systems.

III. SUMMARY AND DISCUSSION

We have calculated here the velocity fields of a superfluid
sample in a cylindrical wedge, or ring-wedge geometry. We
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FIG. 6. �Color online� The critical angular velocity for vortex
nucleation in a ring ��=2��. Here the critical value of the param-
eter � �i.e., �1a2 /�� is plotted as a function of c. The circles are
numerical results, connected by straight dashed lines. The increase
at larger c shows that the nucleation of vortices is unfavorable in
that case.
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FIG. 7. �Color online� Fields produced by a nucleated vortex in
an obstructed ring with c=0.5, at �=�1. Only the fields produced
by the vortex are included. Its position �marked by a �blue� open
dot� is at the optimal value �see text� rv /a=0.74. The total flow is
the sum of that shown in this figure, weighed by a factor of 1 /�,
and that in the top panel of Fig. 1. Because � is rather large, the
result would be hard to distinguish from that shown in Fig. 1.

HYDRODYNAMICS OF SUPERFLUIDS CONFINED IN… PHYSICAL REVIEW E 79, 016303 �2009�

016303-11



have used two different methods to solve the relevant hydro-
dynamic equations both in the absence of vortices and when
vortices are present. From the resulting velocity fields, we
have derived formulas for the moment of inertia and, there-
fore, for the NCRI effect in these geometries.

Physically, the most important of our results is that the
NCRI effect is most prominent for relatively narrow rings.
Our calculations show that the moment of inertia of a
blocked narrow ring is very close to the rigid-body value
unless the width of the ring is a large fraction of its outer
radius. Since the moment of inertia of a superfluid ring for
rotation about its center is zero when it is unblocked �at least
for small ��, one should see a considerable change in the
NCRI when approximately circular superfluid channels in a
sample are obstructed or unobstructed. The fractional change
in the moment of inertia as a ring is unblocked �defined
relative to the moment of inertia of the ring for rigid-body
rotation� is maximum when the rotation axis passes through
the center of the ring. In that case, this ratio approaches unity
very quickly as the aspect ratio c of the ring is increased
toward one �see Fig. 2, top panel� and this ratio has a value
close to 0.44 as c→0. The magnitude of the change in the
rotational inertia upon blocking and unblocking does not de-
pend on the location of the axis of rotation. For a fixed value
of the outer radius a, the magnitude of this change is maxi-
mum when the aspect ratio c is close to 0.52 �see Fig. 2,
bottom panel�. This maximum is very broad. For an annular
superfluid wedge, the moment of inertia about an axis pass-
ing through its tip is close to the rigid-body value if the
opening angle � is small and it decreases as � is increased
�see Figs. 3 and 5�.

The results summarized above are for the case where
there are no vortices, so that the velocity field is irrotational.
Since one expects vortices to be nucleated as the rotational
speed in increased, we have used a free-energy criterion to
determine the critical angular speed for the nucleation of a

vortex in the system. We find that in standard “supersolid”
experiments the relevant range of geometries and speeds in-
cludes both the parameter region where vortices are absent
and that where nucleated vortices exist. For a fixed value of
�=2� �ring geometry�, the critical angular speed increases
rapidly as the aspect ratio c is increased above about 0.5 �see
Fig. 6�. Also, the increase in the moment of inertia due to the
nucleation of a vortex is rather small �less than 10%� in all
cases. These observations imply that the results mentioned
above for a narrow ring without vortices remain, for 4He,
valid for relatively large values of the angular velocity.

Mathematically, a number of relevant results have been
uncovered and emphasized. There are a number of technical
difficulties in the calculation of the velocity fields, leading to
nonconvergent series and singularities. However, the singu-
larities are integrable and the series are Borel summable, so
that there is no difficulty in calculating physical quantities
such as the angular momentum and the kinetic energy. We
also point out the occurrence of a mathematical singularity in
the velocity field in wedges �but not in rings� with ��� and
discuss possible effects of this divergence. This singularity
turns out to have no measurable consequence on experimen-
tal studies of 4He, but may be relevant in studies of cold
atomic systems confined in wedge-shaped traps.

In general, the ideas and methods developed here can be
used in other geometries. We believe that the results and
techniques presented here can be very useful in understand-
ing not only NCRI phenomena in “supersolid” helium, but
also superflow in confined geometries and in finite systems.
Work in which we apply these ideas to study the NCRI effect
in realistic models of grain boundary networks is in progress.
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